免费范文>范文大全>工作总结>工作总结范文

高一数学必修一知识点精选分享

更新时间:

高一数学必修一知识点精选分享(精选9篇)

高一数学必修一知识点精选分享 篇1

  集合

  集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的基本概念,专门研究集合的理论叫做集合论。康托(Cantor,G.F.P.,1845年—1918年,德国数学家先驱,是集合论的,目前集合论的基本思想已经渗透到现代数学的所有领域。

  集合,在数学上是一个基础概念。什么叫基础概念?基础概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下“定义”。集合

  集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。

  元素与集合的关系

  元素与集合的.关系有“属于”与“不属于”两种。

  集合与集合之间的关系

  某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号(如右图),不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』

  集合的几种运算法则

  并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元差集表示

  素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}例如,全集U={1,2,3,4,5}A={1,3,5}B={1,2,5}。那么因为A和B中都有1,5,所以A∩B={1,5}。再来看看,他们两个中含有1,2,3,5这些个元素,不管多少,反正不是你有,就是我有。那么说A∪B={1,2,3,5}。图中的阴影部分就是A∩B。有趣的是;例如在1到105中不是3,5,7的整倍数的数有多少个。结果是3,5,7每项减集合

  1再相乘。48个。对称差集:设A,B为集合,A与B的对称差集A?B定义为:A?B=(A-B)∪(B-A)例如:A={a,b,c},B={b,d},则A?B={a,c,d}对称差运算的另一种定义是:A?B=(A∪B)-(A∩B)无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N_是正整数的全体,且N_n={1,2,3,……,n},如果存在一个正整数n,使得集合A与N_n一一对应,那么A叫做有限集合。差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。记作:AB={x│x∈A,x不属于B}。注:空集包含于任何集合,但不能说“空集属于任何集合”.补集:是从差集中引出的概念,指属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}空集也被认为是有限集合。例如,全集U={1,2,3,4,5}而A={1,2,5}那么全集有而A中没有的3,4就是CuA,是A的补集。CuA={3,4}。在信息技术当中,常常把CuA写成~A。

  集合元素的性质

  1.确定性:每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。2.独立性:集合中的元素的个数、集合本身的个数必须为自然数。3.互异性:集合中任意两个元素都是不同的对象。如写成{1,1,2},等同于{1,2}。互异性使集合中的元素是没有重复,两个相同的对象在同一个集合中时,只能算作这个集合的一个元素。4.无序性:{a,b,c}{c,b,a}是同一个集合。5.纯粹性:所谓集合的纯粹性,用个例子来表示。集合A={x|x2的解集是{x?R|x-3>2}或{x|x-3>2}

  强调:描述法表示集合应注意集合的代表元素

  A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。

  3、集合的三个特性

  (1)无序性

  指集合中的元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。

  例题:集合A={1,2},B={a,b},若A=B,求a、b的值。

  解:,A=B

  注意:该题有两组解。

  (2)互异性

  指集合中的元素不能重复,A={2,2}只能表示为{2}

  (3)确定性

  集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。

高一数学必修一知识点精选分享 篇4

  【某些数列前n项和】

  1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

  2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

  13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

  正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的`外接圆半径

  余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角

  弧长公式l=a_r a是圆心角的弧度数r >0扇形面积公式s=1/2_l_r

  乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

  三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b

  |a-b|≥|a|-|b| -|a|≤a≤|a|

  一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

  根与系数的关系X1+X2=-b/a X1_X2=c/a注:韦达定理

  【判别式】

  b2-4ac=0注:方程有两个相等的实根

  b2-4ac>0注:方程有两个不等的实根

  b2-4ac0时,抛物线开口向上;a0】

  椭圆公式

  1、椭圆周长公式:l=2πb+4(a-b)

  2、椭圆周长定理:椭圆的周长等于该椭圆短半轴,长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差.

  3、椭圆面积公式:s=πab

  4、椭圆面积定理:椭圆的面积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

高一数学必修一知识点精选分享 篇5

  1、柱、锥、台、球的结构特征

  (1)棱柱:

  几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形.

  (2)棱锥

  几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.

  (3)棱台:

  几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

  (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

  几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形.

  (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

  几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形.

  (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

  几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形.

  (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

  几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径.

  3、空间几何体的直观图——斜二测画法

  斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;

  ②原来与y轴平行的线段仍然与y平行,长度为原来的一半.

  4、柱体、锥体、台体的表面积与体积

  (1)几何体的表面积为几何体各个面的面积的和.

  (2)特殊几何体表面积公式(c为底面周长,h为高,为斜高,l为母线)

  (3)柱体、锥体、台体的体积公式

高一数学必修一知识点精选分享 篇6

  本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意。(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法:

  本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒:

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1:

  (1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利)。

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元。

  例2:

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

高一数学必修一知识点精选分享 篇7

  1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。

  中元素各表示什么?

  注重借助于数轴和文氏图解集合问题。

  空集是一切集合的子集,是一切非空集合的真子集。

  3. 注意下列性质:

  (3)德摩根定律:

  4. 你会用补集思想解决问题吗?(排除法、间接法)

  的取值范围。

  6. 命题的四种形式及其相互关系是什么?

  (互为逆否关系的命题是等价命题。)

  原命题与逆否命题同真、同假;逆命题与否命题同真同假。

  7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的性,哪几种对应能构成映射?

  (一对一,多对一,允许B中有元素无原象。)

  8. 函数的三要素是什么?如何比较两个函数是否相同?

  (定义域、对应法则、值域)

  9. 求函数的定义域有哪些常见类型?

  10. 如何求复合函数的定义域?

  义域是_____________。

  11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?

  12. 反函数存在的条件是什么?

  (一一对应函数)

  求反函数的步骤掌握了吗?

  (①反解x;②互换x、y;③注明定义域)

  13. 反函数的性质有哪些?

  ①互为反函数的图象关于直线y=x对称;

  ②保存了原来函数的单调性、奇函数性;

  14. 如何用定义证明函数的单调性?

  (取值、作差、判正负)

  如何判断复合函数的单调性?

  ∴……)

  15. 如何利用导数判断函数的单调性?

  值是( )

  A. 0B. 1C. 2D. 3

  ∴a的值为3)

  16. 函数f(x)具有奇偶性的必要(非充分)条件是什么?

  (f(x)定义域关于原点对称)

  注意如下结论:

  (1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。

  17. 你熟悉周期函数的定义吗?

  函数,T是一个周期。)

高一数学必修一知识点精选分享 篇8

  导数公式

  y=f(x)=c (c为常数)则f'(x)=0

  f(x)=x^n (n不等于0) f'(x)=nx^(n-1)(x^n表示x的n次方)

  f(x)=sinx f'(x)=cosx

  f(x)=cosx f'(x)=-sinx

  f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)

  f(x)=e^x f'(x)=e^x

  f(x)=logaX f'(x)=1/xlna(a>0且a不等于1,x>0)

  f(x)=lnx f'(x)=1/x(x>0)

  f(x)=tanx f'(x)=1/cos^2x

  f(x)=cotx f'(x)=-1/sin^2x

  导数运算法则

  加法法则:(f(x)-g(x))'=f'(x)-g'(x)

  减法法则:(f(x)+g(x))'=f'(x)+g'(x)

  乘法法则:(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)

  除法法则:(g(x)/f(x))'=(g'(x)f(x)-f'(x)g(x))/(f(x))^2

高一数学必修一知识点精选分享 篇9

  二次函数

  I.定义与定义表达式

  一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c

  (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a


高一数学必修一知识点精选分享相关文章:

高中必修一《师说》教案

2022-2022学年第二学期高一数学备课组工作计划

第二学期高一数学教研组工作计划

高一数学教师工作计划范文ppt

人教版数学第一册教案(新教材)学期计划

高一数学上半年总结范文

人教版数学第一册教案(新教材)学期计划

小学数学第一册教学计划

高一数学下学期教学计划3

2023高一开学第一课主题班会

高一数学必修一知识点精选分享

高一数学必修一知识点精选分享(精选9篇)高一数学必修一知识点精选分享篇1集合集合具有某种特定性质的事物的总体。这里的“事物”可以是人,物品,也可以是数学元素。例...
推荐度:
点击下载文档文档为doc格式

精选图文

  • 2024最新办公室年终总结范文
    2024最新办公室年终总结范文

    2024最新办公室年终总结范文【11篇】总结是事后对某一时期、某一项目或某些工作进行回顾和分析,那么一起看看办公室年终总...

  • 会计工作内容的简单描述
    会计工作内容的简单描述

    会计工作内容的简单描述(11篇)会计工作内容的简单描述怎么写?展望部分需要对未来一年的工作进行预测和分析,同时也要提出对...

  • 会计工作总结怎么写新人版
    会计工作总结怎么写新人版

    会计工作总结怎么写新人版10篇会计工作总结怎么写新人版怎么写?制定工作计划时要考虑人员和资源的因素,确保工作的合理分配和...

  • 保安管理试用期工作总结
    保安管理试用期工作总结

    总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能够给人努力工作的动力,为此要我们写...