免费范文>范文大全>工作总结>工作总结范文

初一初二数学重点知识点总结最新

更新时间:

初一初二数学重点知识点总结最新(精选18篇)

初一初二数学重点知识点总结最新 篇1

  中心对称图形

  正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆,平行四边形。

  中心对称图形并不只有一个对称点,比如直线,再比如正弦曲线。

  只是中心对称的图形需要满足不是轴对称图形。比如平行四边形。也有很多六边形、八边形等等只是中心对称而不是轴对称图形。

  既不是轴对称图形又不是中心对称图形

  等腰三角形,直角梯形等。

  普通四边形有的是轴对称图形。

  中心对称的性质

  ①关于中心对称的'两个图形是全等形。

  ②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

  ③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

  识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180°后能与原图形重合。

  中心对称是指两个图形绕某一个点旋转180°后,能够完全重合,这两个图形关于该点对称,该点称为对称中心。二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180°后完全重合才称为对称中点。

初一初二数学重点知识点总结最新 篇2

  两条平行线之间的距离:

  是指从两条平行直线中的一条直线上的一点作另一条直线的垂线段的长;

  注:

  ①能表示两条平行线之间的距离的线段与这两条平行线都垂直;

  ②平行线的位置确定之后,它们之间的'距离是定值,它不随垂线段位置的改变而改变;

  ③平行线间的距离处处相等。

  三种距离定义:

  1、两点间的距离——连接两点的线段的长度;

  2、点到直线的距离——直线外一点到这条直线的垂线段的长度;

  3、两平行线的距离——两天平行线中,一条直线上的点到另一条直线的垂线段长度。

  两直线间的距离公式:

  设两条直线方程为

  Ax+By+C1=0

  Ax+By+C2=0

  则其距离公式为|C1-C2|/√(A2+B2)

  推导:两平行直线间的距离就是从一条直线上任一点到另一条直线的距离,设点P(a,b)在直线Ax+By+C1=0上,则满足Aa+Bb+C1=0,即Ab+Bb=-C1,由点到直线距离公式,P到直线Ax+By+C2=0距离为

  d=|Aa+Bb+C2|/√(A+B)=|-C1+C2|/√(A+B)

  =|C1-C2|/√(A+B)

初一初二数学重点知识点总结最新 篇3

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:

  含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的`值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  一元二次方程的二次函数的关系

  大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y的0的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了

初一初二数学重点知识点总结最新 篇4

  轴对称

  1.如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。

  2.性质

  (1)成轴对称的两个图形全等;

  (2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。

  一次函数

  (一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

  (二)函数三要素

  1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

  2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

  3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

  (三)一次函数的表示方法

  1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

  2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

  3.图像法:用图象来表示函数关系的方法叫做图象法。

  (四)一次函数的性质

  1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

  2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

  3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

  4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

  5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

  6.平移时:上加下减在末尾,左加右减在中间。

  直角三角形

  1.勾股定理及其逆定理

  定理:直角三角形的两条直角边的等于的平方。

  逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。

  2.含30°的直角三角形的边的性质

  定理:在直角三角形中,如果一个锐角等于30°,那么等于的一半。

  3.直角三角形斜边上的中线等于斜边的一半。

  要点诠释:①勾股定理的逆定理在语言叙述的时候一定要注意,不能说成“两条边的平方和等于斜边的平方”,应该说成“三角形两边的平方和等于第三边的平方”。

  ②直角三角形的全等判定方法,HL还有SSS,SAS,ASA,AAS,一共有5种判定方法。

  图形的平移与旋转

  1.平移,是指在同一平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。

  2.平移性质

  (1)图形平移前后的形状和大小没有变化,只是位置发生变化。

  (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等。

  拓展阅读:初中数学提高解题速度的方法

初一初二数学重点知识点总结最新 篇5

  1全等三角形的对应边、对应角相等

  2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等

  3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等

  4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等

  5边边边公理(SSS)有三边对应相等的两个三角形全等

  6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

  7定理1在角的平分线上的点到这个角的两边的距离相等

  8定理2到一个角的两边的距离相同的点,在这个角的平分线上

  9角的平分线是到角的两边距离相等的所有点的集合

  10等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)

  21推论1等腰三角形顶角的平分线平分底边并且垂直于底边

  22等腰三角形的`顶角平分线、底边上的中线和底边上的高互相重合

  23推论3等边三角形的各角都相等,并且每一个角都等于60°

  24等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

  25推论1三个角都相等的三角形是等边三角形

  26推论2有一个角等于60°的等腰三角形是等边三角形

  27在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

  28直角三角形斜边上的中线等于斜边上的一半

  29定理线段垂直平分线上的点和这条线段两个端点的距离相等

  30逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初一初二数学重点知识点总结最新 篇6

  第一章 一次函数

  1 函数的定义,函数的定义域、值域、表达式,函数的图像

  2 一次函数和正比例函数,包括他们的表达式、增减性、图像

  3 从函数的观点看方程、方程组和不等式

  第二章 数据的描述

  1 了解几种常见的统计图表:条形图、扇形图、折线图、复合条形图、直方图,了解各种图表的特点

  条形图特点:

  (1)能够显示出每组中的具体数据;

  (2)易于比较数据间的差别

  扇形图的特点:

  (1)用扇形的面积来表示部分在总体中所占的百分比;

  (2)易于显示每组数据相对与总数的大小

  折线图的特点;

  易于显示数据的变化趋势

  直方图的特点:

  (1)能够显示各组频数分布的情况;

  (2)易于显示各组之间频数的差别

  2 会用各种统计图表示出一些实际的问题

  第三章 全等三角形

  1 全等三角形的性质:

  全等三角形的对应边、对应角相等

  2 全等三角形的判定

  边边边、边角边、角边角、角角边、直角三角形的HL定理

  3 角平分线的性质

  角平分线上的点到角的两边的距离相等;

  到角的两边距离相等的点在角的平分线上.

  第四章 轴对称

  1 轴对称图形和关于直线对称的两个图形

  2 轴对称的性质

  轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;

  如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;

  线段垂直平分线上的点到线段两个端点的距离相等;

  到线段两个端点距离相等的点在这条线段的垂直平分线上

  3 用坐标表示轴对称

  点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).

  4 等腰三角形

  等腰三角形的两个底角相等;(等边对等角)

  等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)

  一个三角形的两个相等的角所对的边也相等.(等角对等边)

  5 等边三角形的性质和判定

  等边三角形的三个内角都相等,都等于60度;

  三个角都相等的三角形是等边三角形;

  有一个角是60度的等腰三角形是等边三角形;

  推论:

  直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半.

  在三角形中,大角对大边,大边对大角.

  第五章 整式

  1 整式定义、同类项及其合并

  2 整式的加减

  3 整式的乘法

  (1)同底数幂的乘法:

  (2)幂的乘方

  (3)积的乘方

  (4)整式的乘法

  4 乘法公式

  (1)平方差公式

  (2)完全平方公式

  5 整式的除法

  (1)同底数幂的除法

  (2)整式的除法

  6 因式分解

  (1)提共因式法

  (2)公式法

  (3)十字相乘法

  初二下册知识点

  第一章 分式

  1 分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2 分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

  (2) 分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3 整数指数幂的加减乘除法

  4 分式方程及其解法

  第二章 反比例函数

  1 反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2 反比例函数在实际问题中的应用

  第三章 勾股定理

  1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.

  第四章 四边形

  1 平行四边形

  性质:对边相等;对角相等;对角线互相平分.

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形.

  推论:三角形的中位线平行第三边,并且等于第三边的一半.

  2 特殊的平行四边形:矩形、菱形、正方形

  (1) 矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定: 有一个角是直角的平行四边形是矩形;

  对角线相等的平行四边形是矩形;

  推论: 直角三角形斜边的中线等于斜边的一半.

  (2) 菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线平分一组对角;

  菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;

  对角线互相垂直的平行四边形是菱形;

  四边相等的四边形是菱形.

  (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形.

  第五章 数据的分析

  加权平均数、中位数、众数、极差、方差

初一初二数学重点知识点总结最新 篇7

  因式分解的一般步骤

  如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,

  通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

  注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

  因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④

  因式分解与整式乘法的关系:m(a+b+c)

  公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  提取公因式步骤:

  ①确定公因式。②确定商式③公因式与商式写成积的形式。

  分解因式注意;

  ①不准丢字母

  ②不准丢常数项注意查项数

  ③双重括号化成单括号

  ④结果按数单字母单项式多项式顺序排列

  ⑤相同因式写成幂的形式

  ⑥首项负号放括号外

  ⑦括号内同类项合并。

初一初二数学重点知识点总结最新 篇8

  实数

  无理数:无限不循环小数叫无理数

  平方根:

  ①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根/0的平方根为0/负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:

  ①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:

  ①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

  ③每一个实数都可以在数轴上的一个点来表示。

初一初二数学重点知识点总结最新 篇9

  第一章 分式

  1 分式及其基本性质

  分式的分子和分母同时乘以(或除以)一个不等于零的整式,分式的只不变

  2 分式的运算

  (1)分式的乘除

  乘法法则:分式乘以分式,用分子的积作为积的分子,分母的积作为积的分母

  除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.

  (2) 分式的加减

  加减法法则:同分母分式相加减,分母不变,把分子相加减;

  异分母分式相加减,先通分,变为同分母的分式,再加减

  3 整数指数幂的加减乘除法

  4 分式方程及其解法

  第二章 反比例函数

  1 反比例函数的表达式、图像、性质

  图像:双曲线

  表达式:y=k/x(k不为0)

  性质:两支的增减性相同;

  2 反比例函数在实际问题中的应用

  第三章 勾股定理

  1 勾股定理:直角三角形的两个直角边的平方和等于斜边的平方

  2 勾股定理的逆定理:如果一个三角形中,有两个边的平方和等于第三条边的平方,那么这个三角形是直角三角形.

  第四章 四边形

  1 平行四边形

  性质:对边相等;对角相等;对角线互相平分.

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形.

  推论:三角形的中位线平行第三边,并且等于第三边的一半.

  2 特殊的平行四边形:矩形、菱形、正方形

  (1) 矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定: 有一个角是直角的平行四边形是矩形;

  对角线相等的平行四边形是矩形;

  推论: 直角三角形斜边的中线等于斜边的一半.

  (2) 菱形

  性质:菱形的四条边都相等;

  菱形的对角线互相垂直,并且每一条对角线平分一组对角;

  菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;

  对角线互相垂直的平行四边形是菱形;

  四边相等的四边形是菱形.

  (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质.

  3 梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;

  等腰梯形的两条对角线相等;

  同一个底上的两个角相等的梯形是等腰梯形.

  第五章 数据的分析

  加权平均数、中位数、众数、极差、方差

初一初二数学重点知识点总结最新 篇10

  一、算术平方根的概念

  正数a有两个平方根(表示为?根,表示为a。0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0。”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:a,我们把其中正的平方根,叫做a的算术平方

  (1)被开方数a表示非负数,即a≥0;

  (2)a也表示非负数,即a≥0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0,向上平移;当b0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b0时,函数y=kx的图像经过第一、三象限,从左向右上升,即随着x的增大y也增大;②当k0,向上平移;当b0时,直线y=kx+b由左至右上升,即y随着x的增大而增大;

  ③当k0时,直线y=kx+b与y轴正半轴有交点为(0,b);

  ⑤当b


初一初二数学重点知识点总结最新相关文章:

初一初二数学重点知识点总结最新

初一初二数学重点知识点总结最新(精选18篇)初一初二数学重点知识点总结最新篇1中心对称图形正(2N)边形(N为大于1的正整数),线段,矩形,菱形,圆,平行四边形...
推荐度:
点击下载文档文档为doc格式

精选图文

  • 2024最新办公室年终总结范文
    2024最新办公室年终总结范文

    2024最新办公室年终总结范文【11篇】总结是事后对某一时期、某一项目或某些工作进行回顾和分析,那么一起看看办公室年终总...

  • 会计工作内容的简单描述
    会计工作内容的简单描述

    会计工作内容的简单描述(11篇)会计工作内容的简单描述怎么写?展望部分需要对未来一年的工作进行预测和分析,同时也要提出对...

  • 会计工作总结怎么写新人版
    会计工作总结怎么写新人版

    会计工作总结怎么写新人版10篇会计工作总结怎么写新人版怎么写?制定工作计划时要考虑人员和资源的因素,确保工作的合理分配和...

  • 保安管理试用期工作总结
    保安管理试用期工作总结

    总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,它能够给人努力工作的动力,为此要我们写...